The origin and maintenance of metabolic allometry in animals

Authors: Craig R White, Dustin J Marshall, Lesley A Alton, Pieter A Arnold, Julian E Beaman, Candice L Bywater, Catriona Condon, Taryn S Crispin, Aidan Janetzki, Elia Pirtle, Hugh S Winwood-Smith, Michael J Angilletta Jr, Stephen F Chenoweth, Craig E Franklin, Lewis G Halsey, Michael R Kearney, Steven J Portugal, and Daniel Ortiz-Barrientos

Published in: Nature Ecology & Evolution

Abstract

Organisms vary widely in size, from microbes weighing 0.1 pg to trees weighing thousands of megagrams — a 1021-fold range similar to the difference in mass between an elephant and the Earth.

Mass has a pervasive influence on biological processes, but the effect is usually non-proportional; for example, a tenfold increase in mass is typically accompanied by just a four- to sevenfold increase in metabolic rate.

Understanding the cause of allometric scaling has been a long-standing problem in biology. Here, we examine the evolution of metabolic allometry in animals by linking microevolutionary processes to macroevolutionary patterns.

We show that the genetic correlation between mass and metabolic rate is strong and positive in insects, birds and mammals.

We then use these data to simulate the macroevolution of mass and metabolic rate, and show that the interspecific relationship between these traits in animals is consistent with evolution under persistent multivariate selection on mass and metabolic rate over long periods of time.

Citation

White CR, Marshall DJ, Alton LA, Arnold PA, Beaman JE, Bywater CL, Condon C, Crispin TS, Janetzki A, Pirtle E, Winwood-Smith HS, Angilletta MJ, Chenoweth SF, Franklin CE, Halsey LG, Kearney MR, Portugal SJ, Ortiz-Barrientos D (2019) The origin and maintenance of metabolic allometry in animals, Nature Ecology & Evolution PDF 8 MB doi:10.1038/s41559-019-0839-9