Fertilisation is not a new beginning: sperm environment affects offspring developmental success

Authors: Hannah Ritchie and Dustin J Marshall

Published in: The Journal of Experimental Biology, volume 216 (August 2013)


For organisms with complex life histories, the direction and magnitude of phenotypic links among life-history stages can have important ecological and evolutionary effects.

While the phenotypic links between mothers and offspring, as well as between larvae and adults, are well recognised, the links between sperm phenotype and offspring phenotype have been less well explored.

Here, we used a split-clutch / split-ejaculate design to examine whether the environment that sperm experience affects the subsequent performance of larvae in the broadcast spawning marine invertebrate Galeolaria gemineoa. The environment that sperm experienced affected the developmental success of larvae sired by these sperm; larvae sired by sperm that experienced low salinities had poorer developmental success than larvae sired by sperm that experienced a normal salinity.

When we explored the interactive effects of the sperm environment and the larval environment with an orthogonal design, we found an interaction; when sperm and larvae experienced the same environment, performance was generally higher than when the sperm and larval environments differed. These effects could be due to selection on specific sperm phenotypes, phenotypic modification of the sperm or both.

Together, our results challenge the traditional notion that sperm are merely transporters of genetic material; instead, significant covariance between sperm and offspring phenotypes exists. Our study adds to a growing list that demonstrates that fertilisation does have a homogenising effect on the phenotype of the zygote, and that events before fertilisation during the gamete phase can carry through to affect performance in later life-history stages.

Full paper

Ritchie H, Marshall DJ (2013) Fertilisation is not a new beginning: sperm environment affects offspring developmental success. The Journal of Experimental Biology, 216 (16), 3104–3109  PDFPDF 254 KB doi:10.1242/jeb.087221