Global change, life-history complexity and the potential for evolutionary rescue

Authors: Dustin J Marshall, Scott C Burgess and Tim Connallon

Published in: Evolutionary Applications, May 2016

Abstract

Most organisms have complex life cycles, and in marine taxa, larval life-history stages tend to be more sensitive to environmental stress than adult (reproductive) life-history stages.

While there are several models of stage-specific adaptation across the life history, the extent to which differential sensitivity to environmental stress (defined here as reductions in absolute fitness across the life history) affects the tempo of adaptive evolution to change remains unclear.

We used a heuristic model to explore how commonly observed features associated with marine complex life histories alter a population’s capacity to cope with environmental change.

We found that increasing the complexity of the life history generally reduces the evolutionary potential of taxa to cope with environmental change. Our model also predicted that genetic correlations in stress tolerance between stages, levels of genetic variance in each stage, and the relative plasticity of different stages, all interact to affect the maximum rate of environmental change that will permit species persistence.

Our results suggest that marine organisms with complex life cycles are particularly vulnerable to anthropogenic global change, but we lack empirical estimates of key parameters for most species.

Citation

Marshall DJ, Burgess SC, Connallon T (2016) Global change, life-history complexity and the potential for evolutionary rescue, Evolutionary ApplicationsPDF 434 KB doi:10.1111/eva.12396

Predicting evolutionary responses to climate change in the sea

Authors: Philip L Munday, Rober R Warner, Keyne Munro, John M Pandolfi and Dustin J Marshall

Published in: Ecology Letters, volume 16, issue 12 (December 2013)

Abstract

An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change.

In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge.

We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential.

Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change.

Full paper

Munday PL, Warner RR, Munro  K, Pandolfi JM, Marshall DJ (2013) Predicting evolutionary responses to climate change in the sea. Ecology Letters,  16: 1488–1500  PDFPDF 371 KB doi:10.1111/ele.12185