Metabolic rate covaries with fitness and the pace of the life history in the field

Authors: Amanda K Pettersen, Craig R White and Dustin J Marshall

Published in: Proceedings of the Royal Society B, volume 283, issue 1831 (May 2016)

Abstract

Metabolic rate reflects the ‘pace of life’ in every organism. Metabolic rate is related to an organism’s capacity for essential maintenance, growth and reproduction—all of which interact to affect fitness.

Although thousands of measurements of metabolic rate have been made, the microevolutionary forces that shape metabolic rate remain poorly resolved. The relationship between metabolic rate and components of fitness are often inconsistent, possibly because these fitness components incompletely map to actual fitness and often negatively covary with each other.

Here we measure metabolic rate across ontogeny and monitor its effects on actual fitness (lifetime reproductive output) for a marine bryozoan in the field. We also measure key components of fitness throughout the entire life history including growth rate, longevity and age at the onset of reproduction.

We found that correlational selection favours individuals with higher metabolic rates in one stage and lower metabolic rates in the other—individuals with similar metabolic rates in each developmental stage displayed the lowest fitness. Furthermore, individuals with the lowest metabolic rates lived for longer and reproduced more, but they also grew more slowly and took longer to reproduce initially.

That metabolic rate is related to the pace of the life history in nature has long been suggested by macroevolutionary patterns but this study reveals the microevolutionary processes that probably generated these patterns.

Citation

Pettersen A, White CF, Marshall DJ (2016) Metabolic rate covaries with fitness and the pace of the life history in the field, Proceedings of the Royal Society B, 283: 20160323
PDF 548 KB doi: 20160323. doi:10.1098/rspb.2016.0323

Evolutionary constraints and the maintenance of individual specialization throughout succession

Authors: Keyne Monro and Dustin J Marshall

Published in: Evolution, volume 67, issue 12 (December 2013)

Abstract

Constraints on life-history traits, with their close links to fitness, are widely invoked as limits to niche expansion at most organiza- tional levels.

Theoretically, such constraints can maintain individual specialization by preventing adaptation to all niches available, but empirical evidence of them remains elusive for natural populations. This problem may be compounded by a tendency to seek constraints involving multiple traits, neglecting their added potential to manifest in trait expression across environments (i.e., within reaction norms).

By replicating genotypes of a colonial marine invertebrate across successional stages in its local community, and taking a holistic approach to the analysis of ensuing reaction norms for fitness, we show the potential for individual specialization to be maintained by genetic constraints associated with these norms, which limit the potential for fitness at one successional stage to improve without loss of fitness at others.

Our study provides new insight into the evolutionary maintenance of individual specialization in natural populations and reinforces the importance of reaction norms for studying this phenomenon.

Full paper

Monro K, Marshall DJ (2013) Evolutionary constraints and the maintenance of individual specialization throughout succession. Evolution 67(12): 3676–3644 PDFPDF 495 KB doi:10.1111/evo.12220

The maintenance of sperm variability: context-dependent selection on sperm morphology in a broadcast spawning invertebrate

Authors: Darren W Johnson, Keyne Monro, and Dustin J Marshall

Published in: Evolution, volume 67, issue 5 (May 2013)

Abstract

Why are sperm so variable despite having a singular, critical function and an intimate relationship with fitness?

A key to under-standing the evolution of sperm morphology is identifying which traits enable sperm to be successful fertilizers. Several sperm traits (e.g., tail length, overall size) are implicated in sperm performance, but the benefits of these traits are likely to be highly con- text dependent.

Here, we examined phenotypic selection on sperm morphology of a broadcast spawning tube worm (Galeolaria gemineoa). We conducted laboratory experiments to measure the relationship between average sperm morphology and relative fertilization success across a range of sperm environments that were designed to approximate the range of sperm concentrations and ages encountered by eggs in nature.

We found that the strength and form of multivariate selection varied substantially across our environmental gradients. Sperm with long tails and small heads were favored in high-concentration environments, whereas sperm with long heads were favored at low concentrations and old ages.

We suggest variation in the local fertilization environment and resulting differences in selection can preserve variability in sperm morphology both within and among males.

Full paper

Johnson D, Monro K, Marshall DJ (2013) The maintenance of sperm variability: context-dependent selection on sperm morphology in a broadcast spawning invertebrate. Evolution, 67-5: 1383–1395 PDF PDF 889 KB doi:10.1111/evo.12022