
ES43CH05-Marshall ARI 25 September 2012 14:27

The Biogeography of Marine
Invertebrate Life Histories
Dustin J. Marshall,1,2 Patrick J. Krug,3
Elena K. Kupriyanova,4 Maria Byrne,5
and Richard B. Emlet6

1School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia;
email: dustin.marshall@monash.edu
2School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072,
Australia
3Department of Biological Sciences, California State University, Los Angeles, California 90032;
email: pkrug@exchange.calstatela.edu
4Marine Invertebrates, Australian Museum, Sydney, New South Wales 2010, Australia;
email: Elena.Kupriyanova@austmus.gov.au
5School of Medical and Biological Sciences, The University of Sydney, New South Wales 2006,
Australia; email: mbyrne@anatomy.usyd.edu.au
6Oregon Institute of Marine Biology, The University of Oregon, Charleston 97420;
email: remlet@uoregon.edu

Annu. Rev. Ecol. Evol. Syst. 2012. 43:97–114

First published online as a Review in Advance on
August 28, 2012

The Annual Review of Ecology, Evolution, and
Systematics is online at ecolsys.annualreviews.org

This article’s doi:
10.1146/annurev-ecolsys-102710-145004

Copyright c© 2012 by Annual Reviews.
All rights reserved

1543-592X/12/1201-0097$20.00

Keywords
complex life-cycles, egg size, maternal effects, meta-analysis, offspring size

Abstract
Biologists have long sought to identify and explain patterns in the diverse
array of marine life histories. The most famous speculation about such pat-
terns is Gunnar Thorson’s suggestion that species producing planktonic lar-
vae are rarer at higher latitudes (Thorson’s rule). Although some elements of
Thorson’s rule have proven incorrect, other elements remain untested. With
a wealth of new life-history data, statistical approaches, and remote-sensing
technology, new insights into marine reproduction can be generated. We
gathered life-history data for more than 1,000 marine invertebrates and ex-
amined patterns in the prevalence of different life histories. Systematic pat-
terns in marine life histories exist at a range of scales, some of which support
Thorson, whereas others suggest previously unrecognized relationships be-
tween the marine environment and the life histories of marine invertebrates.
Overall, marine life histories covary strongly with temperature and local
ocean productivity, and different regions should be managed accordingly.
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1. INTRODUCTION
Geographical patterns in life-history traits such as body size, cell size, and maternal investment
have inspired hypotheses for over a century of biological research (Allen 1877, Bergmann 1847,
Moles & Westoby 2003, Thorson 1936). In the marine environment, identifying and understand-
ing life-history patterns have a particular significance because of the otherwise bewildering array
of modes of reproduction, developmental modes, and life histories in the sea (Strathmann 1985).
Terrestrial life histories tend to map strongly to phylogeny, but marine life histories show tremen-
dous variation that can be completely free of phylogenetic constraints. For example, congeners
can vary from external fertilization with tiny long-lived, feeding larvae, to internal fertilization
and no larval stage and very large offspring (Byrne 2006). Such variation demands exploration
and explanation; so from the very beginning of marine larval studies, biologists have sought to
identify patterns in life histories (for an excellent review, see Young 1990). Today, both managing
and understanding our marine systems rely more than ever on the identification of patterns in
life-history variation.

From an ecological perspective, the identification of geographical variation in marine life
histories should lead to more effective management (Palumbi 2003). The ecological dynamics of
any marine species is affected by its life history: Species with long-lived, far-dispersing larvae can
have different population dynamics from species with short-lived larvae (Eckert 2003, Kinlan &
Gaines 2003; but see Weersing & Toonen 2009). Similarly, species with highly dispersive larvae
are likely to respond to natural and anthropogenic disturbances differently from species with larvae
that spend only a few minutes in the water column (Levin 1984). If geographical variation in life
histories exists, then management practices developed in one region may be inappropriate for
another. For example, it has been suggested that the western coast of the United States is unusual
for its preponderance of planktotrophic species (Goddard 1992). Much work on the spatial scales
of connectivity in marine systems (e.g., Becker et al. 2007, Kinlan & Gaines 2003) and on marine
life-history evolution (Strathmann 1987) comes from this region, but the generality of this research
to other regions remains unclear.

From an evolutionary perspective, geographical patterns in life-history strategies may provide
clues as to the selection pressures acting upon marine life histories (Thorson 1950). There has
been much speculation on the advantages and disadvantages of a larval phase in marine organisms
(Pechenik 1999; Strathmann 1974, 1993) and on whether mothers should produce many small
larvae or a few large offspring (Smith & Fretwell 1974, Vance 1973). Although many attempts
to address these problems have been made and progress has been steady, our understanding of
the selection pressures that favor different strategies remains remarkably incomplete (Marshall
& Morgan 2011). By identifying the conditions that are more commonly associated with some
life-history strategies but not others, we may be able to infer how selection acts on reproduc-
tion and dispersal in the sea. For example, recent theory predicts that temperature should have
a fundamental influence on marine invertebrate life histories (O’Connor et al. 2007) such that
systematic variation among species across temperature gradients should be expected. Caution
must be exercised, however. A genuine understanding of the evolutionary processes that gen-
erate macroevolutionary patterns must come from intraspecific studies (Bernardo 1996), and it
must consider phylogenetic constraints (Collin 2004, Eckelbarger & Watling 1995, McHugh &
Rouse 1998). For example, differential extinction or chance colonization events could drive spatial
patterns in life history in apparently adaptive ways (Poulin & Feral 1996, Uthicke et al. 2009).

Perhaps the most famous speculation about the geography of marine life histories comes from
the great Danish larval biologist Gunnar Thorson, who suggested that species from polar and
deep-sea regions rarely, if ever, have planktonic development (Thorson 1936, 1946, 1950). He
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suggested that “very limited periods of continuous phytoplankton production in connection with
very low water temperatures” (Thorson 1950, p. 25) made conditions inhospitable to a larval
phase. Because larvae are small and relatively vulnerable, the pelagic environment is a dangerous
place (Morgan 1995). Thus, conditions that extend the larval period, low temperatures, or limited
food likely increase larval mortality and select against a larval phase (O’Connor et al. 2007, Vance
1973). Thorson also suggested that species with pelagic, nonfeeding larvae were very rare and
“constitute a rather small percentage of invertebrate species in temperate and warm seas, but are
apparently absent from high-arctic seas” (Thorson 1946, p. 477). Importantly, most discussions of
these ideas have centered on considering polar regions versus the rest of the world (Pearse 1994,
Poulin & Feral 1996). Although Thorson certainly viewed polar regions as being particularly
different, he also suggested that planktotrophy was much more common in the tropics than in
temperate regions (Thorson 1946). Some of these ideas gathered widespread appeal, achieving
paradigm status, and together they are sometimes referred to as “Thorson’s rule” (Mileikovsky
1975). Today, Thorson’s rule has less support (Pearse 1994). Indeed, it is now clear that species
with pelagic larvae are present at both poles (Thorson believed species with pelagic larvae were
absent from Antarctic waters) and in the deep sea (Clarke 1992, Pearse 1994). Perhaps the biggest
problem with Thorson’s suggestions was that they were so absolute in nature—too often was the
term “all” used in describing the patterns that he saw. Such language seems unwarranted given
the likelihood of even one exception. Indeed, Thorson himself seemed troubled by the exceptions
and noted that despite pelagic larvae being “suppressed” in the high arctic sea, some species with
planktotrophic pelagic larvae “are among the most dominant animals of the high arctic coastal
zones” (Thorson 1946, p. 434).

Over the ensuing ∼70+ years, evidence accumulated that led opinions to shift against (or at
least modify) Thorson’s rule. Both Young and Pearse give comprehensive accounts of the history
of challenges and modifications to Thorson’s hypotheses (Pearse 1994, Young 1990). Suffice to
say, evidence contradicting Thorson’s rule now seems so strong that Pearse suggested, “Thorson’s
rule should be laid to rest, and Thorson should be remembered for his stimulating hypotheses
that generated so many contributions in marine biology” (Pearse 1994, p. 26). It is now generally
held that nonfeeding development predominates in both the poles and the deep sea, whereas more
species produce feeding larvae in warm or temperate shallow waters (Clarke 1992, Pearse 1994,
Pearse & Lockhart 2004). Since the 1990s, the biogeography of marine invertebrate life histories
has been largely put aside (for some recent exceptions, see Collin 2003, Fernandez et al. 2009,
Laptikhovsky 2006, Poulin & Feral 1996), the matter now seemingly resolved and strong cautions
against generalizations advised (Pearse 1994).

We believe, however, that there are now many reasons for revisiting the biogeography of re-
production in the sea. First, in the years since the last comprehensive global review (Emlet et al.
1987), a wealth of new data on the life history of marine invertebrates has accumulated (e.g.,
Anthes & Michiels 2007, Collin 2003, Fernandez et al. 2009, Kohn & Perron 1994, Marshall
& Keough 2008a, McEdward & Miner 2001, Pearse 1994, Strathmann 1987, Wilson 2002), al-
lowing a more comprehensive treatment of groups previously overlooked. Second, there have
been few formal statistical treatments of marine invertebrate biogeography. Emlet et al. (1987)
and Collin (2003) analyzed correlations between offspring size and latitude with linear regression
and chi square tests, but for the most part, assessments of Thorson’s rule have lacked a formal
statistical framework. Today, more targeted statistical approaches such as logistic regression are
available that can directly address the relationship between developmental modes and latitude
in a quantitative framework. Instead of viewing polar regions as “all or nothing” with regards
to particular developmental modes, we can ask whether there is any statistically significant re-
lationship between latitude and the distribution of alternative developmental modes. Recently,
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Fernandez et al. (2009) used a more sophisticated statistical approach to model the molluscan
and decapod species richness in different developmental modes along the coast of Chile to great
effect. Third, latitude was used as a proxy for specific environmental variables because detailed
biophysical data were previously unavailable. Thorson believed that both temperature and food
availability decreased at higher latitudes and that one or both of these variables drove the patterns
in marine invertebrate life histories (Thorson 1936, 1946); however, the poles are not foodless
deserts as Thorson believed, and chlorophyll levels at any one time are not negatively correlated
with latitude (see database available at http://dx.doi.org/10.5061/dryad.m7j72). Today, we can
use remote sensing technology to directly test these hypotheses, using satellite imaging to es-
timate sea-surface temperatures and phytoplankton concentrations. Indeed, Collin (2003) used
sea temperature data to examine latitudinal patterns in a group of gastropods. Fernandez et al.
(2009) combined temperature data with chlorophyll a measurements to explore the biogeogra-
phy of different developmental modes in molluscs and crabs along the Chilean coast and found
that both temperature and productivity played a role in molluscs and anomuran crabs but not
brachyuran crabs. With access to unprecedented levels of environmental data, more sophisticated
statistical analyses, and a wealth of new life-history data, a re-examination of Thorson’s rule should
provide new insights into patterns of reproduction in the sea. For details of how we compiled life-
history and environmental data and defined developmental groups and our analytical approach, see
Supplemental Text 1. (Follow the Supplemental Material link from the Annual Reviews home
page at http://www.annualreviews.org.)

2. DISTRIBUTION OF DEVELOPMENTAL
MODES ACROSS LATITUDES
Before discussing our findings, we should first acknowledge an important limitation of our meta-
analysis. Figure 1 shows that, despite the unprecedented size of our data set, it is extremely
restricted geographically; most studies come from just a few, well-studied regions. Our findings
are summarized in Tables 1 and 2. There is a higher fraction of aplanktonic species in the
Southern Hemisphere than the Northern Hemisphere (north, 8%; south, 18%; χ2 = 26.2, P <

0.001), but of the species with planktonic larvae, identical fractions have feeding larvae (60%) in
both hemispheres. The association between latitude and the fraction of species with planktonic
larvae differs between hemispheres (χ2 = 27.8, P < 0.001). The fraction of aplanktonic species
increases strongly with latitude in the south (χ2 = 36.6, P < 0.001), but if exclusively deep-water
species are excluded, there is no relationship in the north (Figure 2). The latitudinal relationship
also varies with phylum, indicated by a strong phylum × latitude × hemisphere interaction
(χ2 = 20.7, P < 0.001), driven by a consistent lack of a relationship in the north but variation
in the relationship among phyla in the south. Both southern echinoderms and molluscs show a
strong relationship with latitude but no relationship is evident in annelids.

Of the species with pelagic larvae, a far lower fraction are feeding at higher latitudes (χ2 =
41.3, P < 0.0001) (Figure 3). This relationship is consistent between hemispheres (latitude ×
hemisphere: χ2 = 0.022, P = 0.882) and among phyla (phylum × latitude: χ2 = 0.23, P =
0.627), though the relationship appears strongest in molluscs and echinoderms.

3. VARIATION IN OFFSPRING SIZE AMONG DEVELOPMENTAL
MODES ACROSS LATITUDES
As has been demonstrated repeatedly for different taxa, developmental mode is an excellent pre-
dictor of offspring size. Aplanktonic species produce the largest offspring, those with planktonic
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Figure 1
A heat map of the distribution of studies used in this review to examine geographical variation in marine invertebrate life histories.
Warmer colors indicate regions from which many species have been studied, cooler colors indicate areas from which only a few species
have been studied, and white areas indicate areas from which we have no data. The vast majority of the marine environment remains
unstudied, and our view of marine life histories comes from only a small fraction of those studies that exist. It should be noted that some
areas are likely to have been studied, but these studies are largely inaccessible to the authors owing to language differences or limited
accessibility.

nonfeeding larvae have intermediate offspring sizes, and those with feeding larvae have the smallest
offspring sizes (Figure 4). Within aplanktonic species and those with nonfeeding larvae, offspring
are generally larger in the Southern Hemisphere relative to the Northern Hemisphere, but species
with feeding larvae are similar in size (Figure 5). The rank differences in offspring size among de-
velopmental modes were consistent across phyla (Figure 4), but within any developmental mode,
there are significant differences in offspring size among phyla (F6,1091 = 34.3, P < 0.001). For
example, among the aplanktonic species, echinoderm eggs were the largest and annelids eggs were
the smallest; among the planktonic, nonfeeding species, the eggs of echinoderms were again the
largest, but mollusc eggs were the smallest.

Table 1 Summary table of the relationship between the fraction of species with each development
mode and various biophysical variables in marine invertebrates

Aplanktonic
Planktonic
nonfeeding Planktonic feeding

Hemisphere ! ! !

Latitude ! (south only) ! (+) ! (−)
SST ! (−) ! (−) ! (+)
Ch a ! (−) ! !

SST × Ch a ! ! !

Key: Ticks, significant relationship; crosses, no relationship; − and +, negative or positive relationship between the
predictor and response variable, respectively. Abbreviations: Ch a, chlorophyll a; SST, sea surface temperature.

www.annualreviews.org • Biogeography of Marine Invertebrate Life Histories 101

A
nn

u.
 R

ev
. E

co
l. 

Ev
ol

. S
ys

t. 
20

12
.4

3:
97

-1
14

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 M
on

as
h 

U
ni

ve
rs

ity
 o

n 
11

/0
5/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ES43CH05-Marshall ARI 25 September 2012 14:27

Table 2 Summary table of the relationship between offspring size and various biophysical variables
in marine invertebrates

Aplanktonic
Planktonic
nonfeeding Planktonic feeding

Hemisphere ! ! !

Phylum ! ! !

Latitude ! (+) ! (+) ! (+)
Sea surface temperature ! (−) ! (−) ! (−)
Chlorophyll a ! ! (−) !

Key: Ticks, significant relationship; crosses, no relationship; − and +, negative or positive relationship between the
predictor and response variable, respectively.

Offspring size increases with latitude across all developmental modes, but the relationship varies
among modes (F2,1035 = 141.3, P < 0.001). The steepest relationship between offspring size and
latitude occurred in aplanktonic species, and the shallowest relationship (though still significantly
different from zero: P = 0.005) occurred in species with feeding larvae (Figure 6). Although the
relationship between offspring size and latitude was positive in all phyla, it varied in slope among
phyla (F4,962 = 23.01, P < 0.001). The steepest relationships occurred in echinoderms and mol-
luscs; among annelids the relationship was much weaker. Taxonomic class further influenced the
relationship between latitude and offspring size (class × latitude × development mode: F10,953 =
28.3, P < 0.001); in fact, this interaction was driven by the lack of a relationship between latitude

a   South b   North
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Figure 2
Proportion of species with aplanktonic development across latitude for (a) the Southern Hemisphere and
(b) the Northern Hemisphere. There is no relationship between latitude and the prevalence of aplanktonic
development in the Northern Hemisphere. The dark blue line indicates the line of best fit generated from a
logistic regression, and light blue lines indicate upper and lower 95%-confidence intervals. Boxplots indicate
the distribution of species across latitude in each developmental mode. Asterisks indicate points outside the
interquartile range, and circles indicate points greatly outside of the interquartile range.
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Figure 3
Proportion of species with planktonic development that have feeding larvae across latitude (pooled for both
hemispheres). The dark blue indicates the line of best fit generated from a logistic regression, and light blue
lines indicate upper and lower confidence intervals. Boxplots indicate the distribution of species across
latitude in each developmental mode. Asterisks indicate points outside the interquartile range.

and offspring size in holothuroids and ophiuroids but by more complex associations in polychaetes.
In polychaetes, there is a weak, but significantly positive relationship between latitude and off-
spring size, but this relationship varies in slope between hemispheres (latitude × hemisphere:
F1,228 = 8.43, P = 0.004). There is a strong, positive relationship between latitude and offspring
size in all developmental modes in the Southern Hemisphere polychaetes (F1,34 = 6.008, P 0.02),
but for Northern Hemisphere polychaetes, the relationship is marginally nonsignificant (F1,194 =
2.87, P = 0.09).

Aplanktonic Nonfeeding Feeding

100

1,000

O
!s

pr
in

g 
si

ze
 (µ

m
)

Mollusca

Echinodermata

Annelida

Figure 4
The size of offspring (estimated as egg diameter) from three developmental modes across the three phyla
(Annelida, Echinodermata, and Mollusca) for which we have the most complete data. Each bar indicates the
mean ( ± standard error) offspring size for each developmental mode. Note the y-axis shows a log10 scale.
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Figure 5
The size of offspring from three developmental modes across two hemispheres. Each bar indicates the mean
( ± standard error) offspring size for each developmental mode. Note the y-axis shows a log10 scale.

4. REGIONAL EFFECTS
The use of ANCOVA (analysis of covariance) accounts for the effect of latitude, but there were
still regional differences in the relative fractions of each developmental mode and in egg sizes
(excluding regions that spanned a narrow range of latitudes such as the Caribbean and Antarctica).
There were strong region × latitude interactions affecting the fraction of species with pelagic
larvae (χ2 = 5.03, P = 0.025) and the fraction of larvae that were feeding (χ2 = 7.25, P = 0.007).
For both response variables, latitudinal gradients in developmental mode were much steeper in
Australia than in North America, and these regions appeared to drive much of the interaction.

There were also regional differences in egg size within developmental modes. Offspring size
differed among regions for species with planktotrophic larvae (F5,453 = 7.85, P < 0.001) and
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a   Aplanktonic b   Nonfeeding c   Feeding

Figure 6
The relationship between offspring size (estimated as egg diameter) and latitude for each developmental mode. Each point represents
the mean of individual species and the dark blue line indicates the line of best fit from a linear regression. Panels show (a) the
relationship for species with aplanktonic development, (b) the relationship for species with nonfeeding larvae, and (c) the relationship
for species with feeding larvae. Note that in all three developmental modes, there is a significantly positive relationship between
offspring size and latitude.
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also for species with pelagic lecithotrophic development (F5,315 = 3.81, P = 0.002). The largest
nonfeeding larvae are in Australia (mean size = 480 µm), and the smallest nonfeeding larvae are
in North America (mean size = 250 µm). The largest feeding larvae are in South America (mean
size = 145 µm), and the smallest feeding larvae are in Australia (mean size = 90 µm). There was
no influence of region on egg size in aplanktonic species.

5. THE ROLE OF EXTREMES: EXCLUDING THE POLES
AND/OR THE TROPICS
The latitudinal patterns of developmental modes are largely unaffected by whether we include the
poles and the tropics. Excluding neither the poles (>60◦) nor the tropics (<30◦) has no effect on
the pattern of higher fractions of aplanktonic species at higher latitudes. Similarly, the relationship
between the prevalence of species with feeding larvae and latitude remains regardless of whether
the tropics and poles are included.

Within each developmental mode, trends in offspring size were also fairly robust to the influ-
ence of low and high latitudes. When the tropics were excluded, there was still a strong positive
association between offspring size and latitude across all developmental modes. When the poles
were excluded (both with and without the tropics), the relationships between offspring size and
latitude remain for aplanktonic species and species with nonfeeding larvae, but was not detected
in species with feeding larvae.

6. THE ROLE OF SEA SURFACE TEMPERATURE
AND OCEAN PRODUCTIVITY
There is a strong association between the prevalence of each developmental mode and local
temperature and productivity. The fraction of species with aplanktonic development varied
with both temperature and chlorophyll concentration (chlorophyll × temperature: χ2 = 7.22,
P = 0.007). Lower temperatures were associated with less planktonic development, and this asso-
ciation was stronger at low productivity levels (Figure 7): Planktonic larvae were more common
where both temperature and productivity were high, whereas areas with the lowest productivity
and temperature had the most aplanktonic species. The fraction of species with feeding lar-
vae increased with temperature (χ2 = 27.0, P < 0.001) but not with productivity (χ2 = 0.77,
P = 0.381).

Within each developmental mode, the relationship between temperature, productivity, and
offspring size is variable (developmental mode × temperature: F2,809 = 109.9, P < 0.0001;
developmental mode × chlorophyll: F2,809 = 4.76, P = 0.009). In aplanktonic species or species
with feeding larvae, as temperature increases, offspring size decreases (aplanktonic: t87 = 8.23,
P < 0.001; feeding: t408 = 3.37, P = 0.001). In species with nonfeeding larvae, larger offspring sizes
were associated with lower temperatures and also with lower levels of productivity (temperature:
t315 = 5.35, P < 0.001; chlorophyll: t315 = 3.17, P = 0.002; Figure 8).

7. PHYLOGENETICALLY CONTROLLED ANALYSES
For 83 species of sacoglossan sea slugs, evolutionary history had little effect on the patterns we
saw. Model fit did not improve when development mode and latitude were allowed to covary
(Supplemental Table 1), supporting a model of uncorrelated trait evolution and indicating that
lecithotrophic species were not more abundant in the tropics. Models of egg-size evolution with
no phylogenetic correction (λ = 0) were preferred over models in which λ was jointly estimated
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Figure 7
The relationship between the proportion of species showing aplanktonic development and the average sea
surface temperature and chlorophyll a levels in the region in which the species was studied. The figure shows
a heat plot for the plane of best fit generated from logistic multiple regressions, where warmer colors
indicate a higher proportion of species with aplanktonic development and cooler colors indicate a lower
proportion of species with aplanktonic development. When temperatures are warmer and food availability is
greater, planktonic development is more common.

(log-BF test = 3.7), indicating no phylogenetic effect on egg size exists in this group. Among
species with lecithotrophic development, there was a significant and positive relationship between
egg size and latitude even when correcting for phylogenetic effects (Supplemental Table 1).
There was no relationship between egg size and latitude for planktotrophic sacoglossans.

For 40 species of Calyptraeid gastropods, phylogenetic effects were more pronounced. There
was no latitudinal pattern in the distribution of development modes (Supplemental Table 1).

Chlorophyll a (mg m–3)

0 1 2 3 4 5 6
–1.5

4.4

10.3

16.2

22.1

28.0

0
100
200
300
400
500
600

O!spring
size (µm)

Te
m

pe
ra

tu
re

 (°
C)

Figure 8
The relationship between offspring size and average sea surface temperature and chlorophyll a levels in the
region in which the species was studied for species with nonfeeding larvae. The figure shows a heat plot for
the plane of best fit generated from multiple regressions, where warmer colors indicate larger offspring sizes
and cooler colors indicate smaller offspring sizes. When temperatures are cooler and food availability is
lower, offspring tend to be larger.
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Models of egg-size evolution that included a phylogenetic correction were strongly preferred over
models in which λ = 0 (log-BF test = 12.1), indicating a strong phylogenetic effect. In contrast to
the overall pattern for molluscs, planktotrophic egg size was significantly but negatively correlated
with latitude (Supplemental Table 1); however, this relationship was apparent with or without the
phylogenetic correction. There was no correlation between lecithotrophic egg size and latitude.

8. DISCUSSION
The geographic distributions of the life histories of marine invertebrates differ greatly between the
Northern and Southern Hemispheres. The Northern Hemisphere is characterized by low levels
of aplanktonic development and much smaller offspring sizes within aplanktonic and nonfeeding
pelagic species. The Southern Hemisphere has twice as many aplanktonic species as the Northern
Hemisphere and also appears to show much stronger latitudinal trends than the Northern Hemi-
sphere. The increase in the fraction of aplanktonic species at higher southern latitudes could be
explained by the general idea that Thorson put forward, that the cold Antarctic waters would be
inhospitable to larvae; but it should be remembered that ∼20% of the species in the Antarctic
have a larval phase, and in the Arctic, more than 70% of species have a larval phase. Our finding
of stronger latitudinal patterns in the Southern Hemisphere relative to the Northern Hemisphere
echoes earlier work on echinoids and asteroids (Clarke 1992, Emlet et al. 1987, Pearse 1994). It ap-
pears that, for a range of phyla, Thorson’s idea that species with planktonic larvae are rarer at high
latitudes only applies in the Southern Hemisphere. Why there should be a significant relationship
in the south but no relationship in the north is unclear—differences in phylogeny, evolutionary
history, or oceanography could drive patterns at this scale. We suspect that a combination of
oceanography and differences in the representation of higher latitudes among hemispheres drove
this pattern. Boundary currents moving along the edges of ocean basins carry water from different
latitudes along the coast, reducing the latitudinal effect on temperature (and therefore, presumably
offspring size) in some places. In the Northern Hemisphere, boundary currents and the (relatively)
poor sampling of very high latitudes resulted in a smaller temperature range being sampled than
in the Southern Hemisphere. Thus, latitude is a poorer proxy for temperature in the north than
the south in our data set (R2 for latitude-temperature relationship in the north = 0.913, and
south = 0.949). Importantly, when temperature, rather than latitude, was used as a predictor for
the prevalence of planktonic species, we found no differences between hemispheres. Thorson’s
suggestion that planktotrophy is rarer at the poles does stand the test of time: In both hemispheres,
there is a marked decrease in the fraction of species with feeding larvae at higher latitudes.

Thorson’s predictions were less accurate for species with nonfeeding larvae. As noted elsewhere
(Clarke 1992, Pearse 1994), there is a marked increase in species with pelagic nonfeeding larvae
moving from the equator to the poles. This is in stark contrast with Thorson’s assertion that pelagic
nonfeeding larvae were absent from the poles, a notion that troubled him: “. . .that lecithotrophic
larvae seem to be totally absent. . .seems at first to be the opposite of what might be expected. At the
outset it would seem that precisely this type of larval development. . .would be well fit for the life in
arctic seas” (Thorson 1946, p. 437). As Thorson intuited, the majority of species in the poles indeed
do have nonfeeding larvae. More generally, we were surprised by the high fraction of species with
nonfeeding larvae: In both hemispheres, 40% of species with planktonic larvae have lecithotrophic
development. If we were to include phyla such as sponges and bryozoans (i.e., those with almost
exclusively nonfeeding larvae), this fraction would be much higher, suggesting that nonfeeding
larval development is the dominant mode of reproduction in coastal marine invertebrates.

Prior consideration of Thorson’s predictions and ensuing discussions of latitudinal patterns
(Clarke 1992, Pearse 1994, Poulin & Feral 1996) focused largely on patterns driven by the poles
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(but see Collin 2003, Emlet et al. 1987). However, our analyses support a more nuanced view
of how life-history strategies are distributed across the globe. As Thorson first suggested, there
are also patterns in temperate and tropical seas: Both pelagic development and feeding larvae are
rarer at higher latitudes (Thorson 1946, 1950). This pattern exists even when considering only the
temperate latitidudinal band of 30◦–60◦. Thus, planktonic development and planktotrophy both
decrease in prevalence moving poleward, but this pattern is not driven solely by adaptation to the
extreme environment of the polar oceans. These latitudinal patterns within the temperate band are
perhaps not surprising given similar intraspecific patterns in offspring size (Marshall et al. 2008).
Overall, it seems that we must not only account for variation in reproduction and development
between the poles and the rest of the world, but also within temperate regions.

It is difficult to account for the differences in offspring sizes between hemispheres. Temper-
atures for a given latitude are generally cooler in the Southern Hemisphere, but only slightly.
Interestingly, the differences in offspring size among hemispheres were restricted to species with
nonfeeding larvae, which suggests that simple temperature effects may not explain the differ-
ences. Based on the biophysical data included in our analyses, the Southern Hemisphere is also
less productive than the Northern Hemisphere (Northern Hemisphere productivity is largely
driven by the productive western coast of the US and the limited representation of the productive
South American coast in our data set) (Figure 1). Southern Hemisphere mothers may, therefore,
provide higher levels of provisioning for their offspring to offset the lack of food available to off-
spring. Alternatively, phylogenetic effects could be driving the differences in offspring size among
hemispheres.

The inclusion of biophysical variables in our analyses provided key insights into marine
life-history patterns. As we expected, there was a strong negative relationship between offspring
size and temperature. Physiologists have long recognized that temperature affects many life-
history traits, including offspring size (Von Bertanffy 1960, Woods 1999). It could be that the
patterns in offspring size we observed with temperature are simple physiological side effects
of cooler temperatures (Bownds et al. 2010, Fischer et al. 2003, Van der Have & de Jong
1996). Van der Have & de Jong (1996) showed that, because growth (cell size increases) and
differentiation (cell number increases) rates are differentially affected by temperature, larger sizes
at metamorphosis are inevitable. How these physiological processes affect offspring size in marine
invertebrates remains unclear, but we suspect that the pattern is driven by more than simple
physiology given that the relationship between temperature and offspring size was so variable
among developmental modes. Furthermore, the few intraspecific studies that have examined
temperature-induced offspring size changes in marine invertebrates and fish suggest that they do
indeed have an adaptive basis (Bownds et al. 2010, Burgess & Marshall 2011, Salinas & Munch
2012). Nevertheless, we suggest that future studies examine the complex interplay between
temperature, development, and offspring size to delineate the role of physiological processes in
generating these patterns (Van der Have & de Jong 1996).

Perhaps the most exciting result of our meta-analysis is the combined associations of temper-
ature and productivity with marine invertebrate life-history patterns. Thorson was incorrect in
assuming that the polar waters are completely food limited, but he was correct in thinking that
both temperature and food influence the incidence of planktonic development. Our results in this
regard are intuitively appealing: Planktonic larvae are more common when food levels and temper-
ature are high, and these are conditions that allow rapid development and, hence, minimize larval
mortality due to advection, predation, and starvation (Morgan 1995, Vance 1973). The interaction
between temperature and productivity (and by inference, larval food) is particularly interesting:
For a given temperature, aplanktonic development is more common under conditions of lower
productivity. A surprising result was that food affects the fraction of species with free-swimming
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pelagic larvae but not the incidence of planktotrophy; this finding suggests that productivity affects
selection on the presence of a larval phase but not on larval feeding. This finding is in contrast to
that of Fernandez et al. (2009), where productivity affects the species richness of planktotrophic
molluscs and anomuran species along the Chilean coast. Our measure of productivity was very
coarse; however, based on mean productivity across two summer and two winter months. Future
studies of more fine-scale estimates of productivity should provide further insight into how it
shapes marine life histories.

Our meta-analysis showed that in species with nonfeeding larvae, lower levels of productivity
are associated with much larger offspring sizes. Differences in productivity have previously been
implicated in shifts in offspring size and developmental mode over evolutionary time (Uthicke et al.
2009). For example, the rise of the Panamanian Isthmus resulted in high levels of productivity on
the Pacific side and low levels in the Caribbean. In geminate pairs of bivalves and echinoderms,
Pacific species produced much smaller eggs compared to species in the nutrient-poor Caribbean
(Lessios 1990, Moran 2004).

We found no overall effect of phylogeny on egg size in sacoglossan sea slugs, but there was
a strong influence of phylogeny on Calyptraeid egg sizes. The lack of phylogenetic effect is per-
haps not surprising given the frequent evolutionary transitions between development modes in
sacoglossans (Krug 2009). The effect estimated for Calyptraiedae contrasts with results by Collin
(2004), who found no such effect; differences in methodology (Markov chain Monte Carlo ver-
sus maximum likelihood) or phylogenetic resolution may explain the different outcomes. In each
group, however, patterns within a development mode were detectable with or without a phy-
logenetic correction. Latitude was positively related to egg size for lecithotrophic sacoglossans
but was negatively correlated with egg size for planktotrophic Calyptraeidae. These trends were
seen in conventional statistical analyses of each group and were unaffected by inclusion of a formal
phylogenetic correction in models of trait evolution, suggesting that the trends we report from the
full data set are not artifacts of shared history within groups. More comparative studies are clearly
needed to identify clades like the Calyptraeidae and Conus, within which trends run counter to those
described for the rest of a given phylum; such exceptions may prove useful in identifying causal
factors that drive trends in egg size. Overall, our efforts to include phylogenetic analyses were ham-
pered by a poor overlap between those species for which we have life-history data and those species
for which molecular phylogenies exist, highlighting a need for future efforts to bridge this gap.

9. SELECTION ACROSS THE LIFE HISTORY
Thorson and subsequent investigators sought to explain marine life-history patterns by focusing
on selection acting on planktonic larvae (but see Havenhand 1995, Marshall & Morgan 2011).
However, selection across the entire life history must be considered to advance our understanding
of how larval strategies evolve. High planktonic mortality rates certainly impose strong selection
on larvae, but so too must forces acting on pre- and postlarval stages (Marshall & Morgan 2011,
Roughgarden 1989). Within a species, offspring size-specific selection can act at both fertilization
and postmetamorphic performance (Marshall & Keough 2008a). More generally, organisms with
complex life cycles are likely to express traits that are the product of complementary and con-
flicting selection pressures across the entire life history (Schluter et al. 1991). Multiple lines of
evidence in our meta-analysis suggest that environmental influences on multistage selection may
be responsible for interspecific variation in offspring size in marine invertebrates that we observed,
and below we outline each.

The relationship between offspring size and temperature was not consistent among develop-
mental modes and was steepest in two modes in which no larval feeding takes place. If simple
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physiological effects drove the relationship between temperature and offspring size, it seems rea-
sonable to expect similar slopes across all developmental modes. Because species with feeding
larvae occupy a narrower band of egg sizes, this group may simply be more constrained with
regard to the slope of the relationship between temperature and offspring size. One theory pre-
dicts metamorphosis should be more costly at cooler temperatures (Rombough 2006), but this
idea remains untested in marine invertebrates and should be explored. Alternatively, selection
for increased size postmetamorphosis may be stronger in cooler temperatures. In species with no
larval feeding stage, there is a positive association between egg size and size at metamorphosis
(Collin 2003, Emlet et al. 1987). As noted by several other researchers (Emlet et al. 1987, Pearse
et al. 1991), nonfeeding larvae can complete metamorphosis coming from eggs smaller than 200
microns, and so any increase in offspring size beyond this may be used solely to increase perfor-
mance and resilience postmetamorphosis. We saw a strong association between offspring size and
temperature in species with no larval stage and in species with nonfeeding larvae, suggesting that
selection favors larger juveniles at lower temperatures. Although this is an intriguing hypothesis,
only one study has formally examined selection on offspring size across a latitudinal gradient.
Marshall & Keough (2008b) found postmetamorphic selection favored larger offspring at higher
latitudes, but the effect of latitude was not due solely to temperature: Selection actually favored
smaller offspring in winter than summer. We therefore echo earlier calls (Havenhand 1995, Pearse
et al. 1991, Wray 1995) for studies that formally examine variability in postmetamorphic selection
on offspring size across environmental gradients.

Productivity affected offspring size in species with nonfeeding larvae; lower levels of productiv-
ity resulted in larger offspring sizes in this group. Many studies within species show that mothers
that experience limited food often produce larger offspring because selection for increased off-
spring size intensifies when food is scarce (Allen et al. 2008, Bashey 2006, Fox et al. 1997). In
areas with lower productivity, presumably food availability is lower (particularly for filter feeders
that rely on phytoplankton), and in these areas, mothers may produce larger eggs in order to
compensate for poorer food conditions that their offspring will encounter postmetamorphosis
(Allen et al. 2008, Fox et al. 1997). This explanation assumes that lower productivity as measured
by chlorophyll a is a good predictor of food availability more generally: This assumption will be
more appropriate for some species than others. The pattern of larger offspring in species with
nonfeeding larvae in conditions of lower productivity is repeated at the regional scale: Adjusted
for latitude, North America has the highest measures of chlorophyll a, whereas Australia has the
lowest. These regions were also the site of the smallest and largest nonfeeding larvae, respectively.
To test the hypothesis that lower food availability selects for larger size at metamorphosis, formal
tests across naturally varying food gradients or experimental manipulations are required (Fox et al.
1997).

10. MANAGEMENT IMPLICATIONS
Our results are relevant for managers: The life histories of marine invertebrates vary predictably
among regions and along latitudinal gradients, and different regions should be managed accord-
ingly (Kelly & Eernisse 2007, O’Connor et al. 2007). For most benthic animals, larval development
mode determines the spatial scale of migration among demes. Understanding larval connectivity
is thus critical for spacing of marine protected areas to ensure genetic and demographic ex-
change among reserves and replenishment of adjacent areas (Botsford et al. 2001, Palumbi 2003,
Shanks et al. 2003, White et al. 2010). A mismatch between the typical larval dispersal kernal and
the spacing of marine reserves can threaten population persistence and recolonization dynamics
on ecological timescales (Hastings & Botsford 2006). Differences in life-history patterns among
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regions and latitudes may drive predictable changes in connectivity among reserves, particularly
across latitudinal bands; higher latitudes are poor in species with dispersive, feeding larvae, thus
high-latitude reserves may experience reduced connectivity compared to tropical regions. Such
predictions are overly simplistic, however; for example, nonfeeding larvae that develop in extreme
cold can have longer pelagic durations than feeding larvae developing in warm tropical waters
(Pearse et al. 1991). On balance, however, we expect cooler regions to have more poorly con-
nected populations than the tropics owing to the increased fraction of species with aplanktonic
and nonfeeding larvae. Note that our expectation, at first glance, seems to contradict that of
O’Connor et al. (2007), who suggested that, all being equal, connectivity should be greater at the
poles relative to the tropics because developmental rates are much faster in the tropics. The con-
clusions of O’Connor et al. (2007) certainly hold for any one developmental mode: Within each
developmental mode, we would expect greater connectivity among distant populations in poles
relative to the tropics because of slower developmental rates in cooler clines. Overall, however,
because of the differences in representation of different developmental modes across latitudes, we
would expect a higher fraction of dispersive, planktotrophic species in the tropics relative to the
poles and, therefore, greater connectivity at lower latitudes.

Connectivity is not the only ecological process relevant to management that is likely to be
affected by life history; there is some evidence that population variability may also be affected.
Eckert (2003) showed that species with aplanktonic development tend to show more variation
in abundance over time relative to species with a larval stage. If this pattern applies globally, our
results suggest that, because low-temperature regions (as well as places with very low productivity)
have more species with aplanktonic development, populations in these regions should exhibit more
variability over time and should be managed accordingly.

Our findings have implications for how anthropogenic climate change may affect species distri-
butions in the future. We found that species with planktotrophic development were more common
in warmer conditions and that offspring were smaller at higher temperatures across all develop-
mental modes. Assuming that temperature is the causal factor driving these relationships, we might
expect that as global temperatures increase with climate change, species with planktotrophic de-
velopment (and smaller eggs more generally) will become more common. Conversely, we might
expect species with nonfeeding larvae to become less common worldwide. Furthermore, we might
expect species with planktotrophic development to show range expansions toward the poles and
contraction of the ranges of species with nonfeeding toward the poles. Already, the range shifts of
some planktotrophic species have been linked to climate change (Ling et al. 2009). Further tests
examining the direct effect of temperature on the selective advantage of different developmental
modes and offspring sizes are therefore urgently needed.
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Richard Fuller assisted in the preparation of Figure 1. This paper is dedicated to the memory of
Leonard George Drennan (April 1, 1927–November 24, 2011).
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Jon Fjeldså, Rauri C.K. Bowie, and Carsten Rahbek ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 249

Evolutionary Inferences from Phylogenies: A Review of Methods
Brian C. O’Meara ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 267

A Guide to Sexual Selection Theory
Bram Kuijper, Ido Pen, and Franz J. Weissing ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 287

Ecoenzymatic Stoichiometry and Ecological Theory
Robert L. Sinsabaugh and Jennifer J. Follstad Shah ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 313

Origins of New Genes and Evolution of Their Novel Functions
Yun Ding, Qi Zhou, and Wen Wang ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 345

Climate Change, Aboveground-Belowground Interactions,
and Species’ Range Shifts
Wim H. Van der Putten ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 365

Inflammation: Mechanisms, Costs, and Natural Variation
Noah T. Ashley, Zachary M. Weil, and Randy J. Nelson ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 385

New Pathways and Processes in the Global Nitrogen Cycle
Bo Thamdrup ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 407

Beyond the Plankton Ecology Groug (PEG) Model: Mechanisms Driving
Plankton Succession
Ulrich Sommer, Rita Adrian, Lisette De Senerpont Domis, James J. Elser,

Ursula Gaedke, Bas Ibelings, Erik Jeppesen, Miquel Lürling, Juan Carlos Molinero,
Wolf M. Mooij, Ellen van Donk, and Monika Winder ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 429

Global Introductions of Crayfishes: Evaluating the Impact of Species
Invasions on Ecosystem Services
David M. Lodge, Andrew Deines, Francesca Gherardi, Darren C.J. Yeo,

Tracy Arcella, Ashley K. Baldridge, Matthew A. Barnes, W. Lindsay Chadderton,
Jeffrey L. Feder, Crysta A. Gantz, Geoffrey W. Howard, Christopher L. Jerde,
Brett W. Peters, Jody A. Peters, Lindsey W. Sargent, Cameron R. Turner,
Marion E. Wittmann, and Yiwen Zeng ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 449

Indexes
Cumulative Index of Contributing Authors, Volumes 39–43 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 473

Cumulative Index of Chapter Titles, Volumes 39–43 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 477

Errata
An online log of corrections to Annual Review of Ecology, Evolution, and Systematics
articles may be found at http://ecolsys.annualreviews.org/errata.shtml

vi Contents

A
nn

u.
 R

ev
. E

co
l. 

Ev
ol

. S
ys

t. 
20

12
.4

3:
97

-1
14

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 M
on

as
h 

U
ni

ve
rs

ity
 o

n 
11

/0
5/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.


	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Ecology, Evolution, and Systematics  Online
	Most Downloaded Ecology, Evolution, and Systematics Reviews 
	Most Cited Ecology, Evolution, and Systematics Reviews 
	Annual Review of Ecology, Evolution, and Systematics Errata 
	View Current Editorial Committee

	All Articles in the Annual Review of Ecology, Evolution, and Systematics, Vol. 43 
	Scalingy Up in Ecology: Mechanistic Approaches
	Adaptive Genetic Variation on the Landscape: Methods and Cases
	Endogenous Plant Cell Wall Digestion: A Key Mechanismin Insect Evolution
	New Insights into Pelagic Migrations: Implications for Ecology and Conservation
	The Biogeography of Marine Invertebrate Life Histories
	Mutation Load: The Fitness of Individuals in Populations Where Deleterious Alleles Are Abunduant
	From Animalcules to an Ecosystem: Application of Ecological Concepts to the Human Microbiome
	Effects of Host Diversity on Infectious Disease
	Coextinction and Persistence of Dependent Species in a Changing World
	Functional and Phylogenetic Approaches to Forecasting Species’ Responsesto Climate Change
	Rethinking Community Assembly through the Lens of Coexistence Theory
	The Role of Mountain Ranges in the Diversification of Birds
	Evolutionary Inferences from Phylogenies: A Review of Methods
	A Guide to Sexual Selection Theory
	Ecoenzymatic Stoichiometry and Ecological Theory
	Origins of New Genes and Evolution of Their Novel Functions
	Climate Change, Aboveground-Belowground Interactions,and Species’ Range Shifts
	Inflammation: Mechanisms, Costs, and Natural Variation
	New Pathways and Processes in the Global Nitrogen Cycle
	Beyond the Plankton Ecology Groug (PEG) Model: Mechanisms DrivingPlankton Succession
	Global Introductions of Crayfishes: Evaluating the Impact of SpeciesInvasions on Ecosystem Services


	ar.logo: 


